高中数学知识点23:函数的最值
日期:2015-01-28
来源:招生考试信息网
点击:
一、函数的最值定义
1、最大值
最大值:设函数y=f(x)定义域为I,如果存在实数M满足:
对于I中任意的x,都有f (x)<=M;
I中存在一个数x0使得f(x0)=M。
则称M是函数y=f(x)的最大值,记作f(x)max=f(x0)=M
2、最小值
最小值:设函数y=f(x)定义域为I,如果存在实数M满足:
对于I中任意的x,都有f(x)>=M;
I中存在一个数x0使得f(x0)=M。
则称M是函数y=f(x)的最小值,记作f(x)min=f(x0)=M
三、求函数的最值方法
(1)图像法
(1)二次函数法
如果自变量的取值范围是全体实数,那么函数在顶点处取最值; (2)如果自变量的取值范围不是全体实数,要根据具体范围加以分析,结合函数图像的同时利用函数的增减性分析题意,求出函数的最大值或最小值。
(2)单调性法
(3)求值域法
1、最大值
最大值:设函数y=f(x)定义域为I,如果存在实数M满足:
对于I中任意的x,都有f (x)<=M;
I中存在一个数x0使得f(x0)=M。
则称M是函数y=f(x)的最大值,记作f(x)max=f(x0)=M
2、最小值
最小值:设函数y=f(x)定义域为I,如果存在实数M满足:
对于I中任意的x,都有f(x)>=M;
I中存在一个数x0使得f(x0)=M。
则称M是函数y=f(x)的最小值,记作f(x)min=f(x0)=M
三、求函数的最值方法
(1)图像法
(1)二次函数法
如果自变量的取值范围是全体实数,那么函数在顶点处取最值; (2)如果自变量的取值范围不是全体实数,要根据具体范围加以分析,结合函数图像的同时利用函数的增减性分析题意,求出函数的最大值或最小值。
(2)单调性法
(3)求值域法
<<【高中数学知识点目录】
(文章来源招生考试网,转载请注明原文出处: https://www.sczsxx.com/html/gaokaoziyuan/shuxue/2015/0128/sxzsd23.html)
特别说明:招生考试网【www.sczsxx.com】所提供的信息仅供参考,相关信息以权威部门公布的信息为准。